13 research outputs found

    The evolution of language: a comparative review

    Get PDF
    For many years the evolution of language has been seen as a disreputable topic, mired in fanciful "just so stories" about language origins. However, in the last decade a new synthesis of modern linguistics, cognitive neuroscience and neo-Darwinian evolutionary theory has begun to make important contributions to our understanding of the biology and evolution of language. I review some of this recent progress, focusing on the value of the comparative method, which uses data from animal species to draw inferences about language evolution. Discussing speech first, I show how data concerning a wide variety of species, from monkeys to birds, can increase our understanding of the anatomical and neural mechanisms underlying human spoken language, and how bird and whale song provide insights into the ultimate evolutionary function of language. I discuss the ‘‘descended larynx’ ’ of humans, a peculiar adaptation for speech that has received much attention in the past, which despite earlier claims is not uniquely human. Then I will turn to the neural mechanisms underlying spoken language, pointing out the difficulties animals apparently experience in perceiving hierarchical structure in sounds, and stressing the importance of vocal imitation in the evolution of a spoken language. Turning to ultimate function, I suggest that communication among kin (especially between parents and offspring) played a crucial but neglected role in driving language evolution. Finally, I briefly discuss phylogeny, discussing hypotheses that offer plausible routes to human language from a non-linguistic chimp-like ancestor. I conclude that comparative data from living animals will be key to developing a richer, more interdisciplinary understanding of our most distinctively human trait: language

    Vervet monkeys and humans show brain asymmetries for processing conspecific vocalizations, but with opposite patterns of laterality

    No full text
    A robust finding in the human neurosciences is the observation of a left hemisphere specialization for processing spoken language. Previous studies suggest that this auditory specialization and brain asymmetry derive from a primate ancestor. Most of these studies focus on the genus Macaca and all demonstrate a left hemisphere bias. Due to the narrow taxonomic scope, however, we lack a sense of the distribution of this asymmetry among primates. Further, although the left hemisphere bias appears mediated by conspecific calls, other possibilities exist including familiarity, emotional relevance and more general acoustic properties of the signal. To broaden the taxonomic scope and test the specificity of the apparent hemisphere bias, we conducted an experiment on vervets (Cercopithecus aethiops)—a different genus of old world monkeys and implemented the relevant acoustic controls. Using the same head orienting procedure tested with macaques, results show a strong left ear/right hemisphere bias for conspecific vocalizations (both familiar and unfamiliar), but no asymmetry for other primate vocalizations or non-biological sounds. These results suggest that although auditory asymmetries for processing species-specific vocalizations are a common feature of the primate brain, the direction of this asymmetry may be relatively plastic. This finding raises significant questions for how ontogenetic and evolutionary forces have impacted on primate brain evolution

    Voice processing in human and non-human primates

    No full text
    Humans share with non-human primates a number of voice perception abilities of crucial importance in social interactions, such as the ability to identify a conspecific individual from its vocalizations. Speech perception is likely to have evolved in our ancestors on the basis of pre-existing neural mechanisms involved in extracting behaviourally relevant information from conspecific vocalizations (CVs). Studying the neural bases of voice perception in primates thus not only has the potential to shed light on cerebral mechanisms that may be—unlike those involved in speech perception—directly homologous between species, but also has direct implications for our understanding of how speech appeared in humans. In this comparative review, we focus on behavioural and neurobiological evidence relative to two issues central to voice perception in human and non-human primates: (i) are CVs ‘special’, i.e. are they analysed using dedicated cerebral mechanisms not used for other sound categories, and (ii) to what extent and using what neural mechanisms do primates identify conspecific individuals from their vocalizations
    corecore